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INCORPORATING GENERAL RACE AND HOUSING F L E X I B I L I T Y  AND 

DEADBAND I N  ROLLING ELEMENT BEARING ANALYSIS* 

R.R.  Davis and C.S.  Val lance 
Aero je t  Techsystems Company 

P.O. Box 13222 
Sacramento, C a l i f o r n i a  95813, U .S .A .  

New methods for including the effects of general race and housing compliance and outer race-to-housing 
deadband (clearance) in rolling element bearing mechanics analysis is presented. It is shown that these 
effects can cause significant changes in bearing stiffness characteristics, which are of major importance in 
rotordynamic response of turbomachinery and other rotating systems. Preloading analysis is demonstrated 
with the new finite element/contact mechanics hybrid method applied to a 45 mm angular contact ball 
bearing. 

INTRODUCTION 

Accurate analytical prediction of the rotordynamic performance of turbomachinery has foremost 
dependence on accurate knowledge of the stiffness of bearings and bearing support components. Classical 
methods of rolling element bearing loading analysis developed by Jones [ l ]  and Harris [2] have proven quite 
useful in cases where the inherent race rigidity assumption (except local contact deformation) is reasonable. 
However, critical speed and rotordynamic stability predictions for turbomachinery using these techniques are 
often inaccurate. Comparisons with test data usually indicate that the predicted bearing stiffness is too high, 
sometimes by large factors which have eluded quantitative explanation. 

Most conventional turbomachinery using angular contact ball bearings has outer race clearance or 
deadband to accommodate radial growth and axial movement of the shaft assembly in response to thermal or 
thrust balance forces. The presence of deadband violates the classical assumption of race rigidity because 
the outer race is allowed to deform within the clearance annulus when the bearing is loaded. The result is a 
reduction of bearing stiffness as seen by the rotor, and nonlinearity introduced by the clearance gap. 

Despite the possible importance of the aforementioned effects on rotordynamic behavior, they have not 
received significant attention in the literature. Kleckner, Pirvics, and Castelli [3] have included radial housing 
and simplified race compliance as influence coefficients in their high capability software CYBEAN and 
SPHERBEAN, but discussion centered on thermal and other effects pertinent to bearing internal motions 
only. Childs and Moyer [4], among others, have simulated the bearing deadband effect on rotordynamics 
and have shown that it can cause resonance frequency shifts and subsynchronous response. However, no 
one known to the authors has documented in detail the effect of race flexibility. In fact, it is largely ignored 
even today in very comprehensive turbomachinery bearing investigations such as described in reference [5]. 
Bearing stiffness testing is often done by back-calculation from shaft critical speeds for lack of confidence in 
predicted values. For example, see the work of Beatty [6]. These tests may be subject to significant error, as 
critical speeds depend on other factors that may be difficult to accurately control or model. Furthermore, 
deadband and bearing stiffness effects are not separable in these tests, leading to questionable results. 

This work will expand on the analysis of [3] to describe in detail new methods to incorporate general housing 
and race flexibility models, including deadband, in the mechanics of rolling element bearing loading. The 
techniques will be developed in the context of angular contact bearings only in the interest of brevity; 
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extension to other bearing types is analogous. The objective is to provide straightforward tools to better 
address the stiffness characteristics of rolling element bearings in rotordynamic analysis. The results are 
applicable to bearing life evaluation and dynamics as well. Discussion will begin with qualitative description 
of flexibility and deadband effects. The methods will be developed mathematically, and then demonstrated 
for bearing preload analysis. General bearing loading examples are extensive and will appear in a separate 
paper. 

P l j ,  P2j 
Q 
Qijf Qoj 
Qirjr Qizj 
Qorjl Qozj 
r, 8 

NOMENCLATURE 

Unloaded distance between curvature centers, (m) 
Radial deadband, (m) 
Inner race component Hertzian contact compliance, (m/N) 
Outer race component Hertzian contact compliance, (m/N) 
Total bearing tangent compliance matrix, (m/N) 
Race ball contact tangent compliance matrices, (m/N) 
Partitions of race compliance matrix, (m/N) 
Bearing pitch diameter, (m) 
Ball diameter, (m) 
Raceway osculations 
External loads on bearing along r, 8, (N) 
Radial and axial loads at deadband gap k, (N) 
Gap closure stiffnesses, (N/m) 
Contact stiffness parameters, (N/ml 5) 
Bearing race stiffness matrix, (N/m) 
Contact stiffness parameters at ball j, (N/m1.5) 
Partitions of race stiffness matrix, (N/m) 
Configuration labels 
Ball load lever arms for inner race, ball j, (m) 
Ball load, (N) 
Ball loads at ball j, (N) 
Inner race component ball loads at ball j, (N) 
Outer race component ball loads at ball j, (N) 
Radial and lateral coordinate directions 
Housing deflections at gap k, (m) 
Radial and axial inner race deflection at ball j contact, (m) 
Radial and axial outer race deflection at ball j contact, (m) 
Outer race outer surface deflection at gap k, (m) 
Radii to raceway curvature centers, (m) 

Inner race deflections along r, 8, (m) 
Cartesian axes, z axial 
Inner race axial offset from load application point to curvature center locus, (m) 
Unloaded contact angle, (rad) 
Contact angles, (rad) 

Resultant load error vector 
Incremental ball loads at ball j, (N) 
Arj, Azj augmented by race deflection contributions, (m) 

Vector Of AQirj, AQizj 
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Radial and axial ball contact deflections due to inner race rigid body 
displacements, (m) 
Incremental versions of roj, Zoj, (m) 
Vector of Arj, AZj 
Incremental housing deflection, (m) 
Incremental outer race outer surface deflection, (m) 
Partitions of race stiffness matrix due to gap stiffness, (N/m) 
Total or incremental rigid body rotations of inner race, (m) 
Resultant load summation matrix 
Inner race kinematic transformation matrix 
Contact deflection, (m) 
Vector of 6,, 6y, 6a, ex, OY 
Hertzian contact deflections at ball j, (m) 
Inner race component Hertzian contact deflections at ball j, (m) 
Outer race component Hertzian contact deflections at ball j, (m) 
Total or incremental rigid body translations of inner race, (m) 
Ball azimuth angle from Cartesian x, (rad) 
Transpose 
Inverse 
Outer race 
Inner race 
Ball index 
Gap index 
Pertaining to outer race outer surface at gap k 
Pertaining to housing at gap k 

EFFECTS OF RACE/HOUSING FLEXIBILITY AND DEADBAND 

The reduction of bearing stiffness due to outer race freedom has already been mentioned in general terms, 
and some discussion in the context of roller bearings and simple thin ring assumptions can be found in [2], 
Chapter 6.1 1. Outer race bulk deformation can cause redistribution of ball loads within the bearing and 
change in stiffness characteristics. Besides reduction of bearing axial and radial stiffness, asymmetry of 
stiffness also results as a by-product of the deadband. Referring to Figure 1, deadband allows the outer race 
to roll along the housing bore surface in response to load. As a result, the stiffness of the bearing in the 
direction lateral to contact, 8 in Figure 1, may be much smaller than in the contact direction r. In the case of 
zero contact load, the @stiffness is in fact zero, while the r stiffness is some finite value in compression. For 
non-zero load along r, the 8 stiffness is greater than zero due to development of a contact area by race bulk 
deformation that can resist moments. Figure 2 shows the general load-deflection relationships for a given 
preload system. In rotordynamic analysis, this data would be used in two different ways: 

Large Steady Radial Load - If steady radial loads exist to hold the rotor and bearing against the bore, 
the slope of the curves for F, given and Fg = 0 could be used as linear stiffness for small perturbation 
moda1,'imbalance harmonic,' or transient kalysis. In this case, bearing stiffness is very asymmetric, in 
fixed direct ions. 

Small Steady Radial Load - In this case, deadband nonlinearity must be included in transient analysis. 
Bearing stiffness in conjunction with deadband can be modeled using the radial load-deflection curve 
only and instantaneous shaft/housing position which can be expressed in r only. The rolling effect is 
then implicit and bearing stiffness changes in magnitude and direction in proper response to shaft 
motion. 

I 
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It is important to note that deadband itself has its own effects on rotordynamics separate from the induced 
bearing stiffness reduction. Clearance can lead to impact phenomena and complicated response, which will 
not be discussed in detail here. Clearance has been shown [4] to reduce critical speeds just as a softer 
bearing would, so the effects are not readily separable unless one carefully quantifies the true stiffness 
reduction first. The objective is thus to accurately determine the curves of Figure 2 to be used in 
rotordynamic analysis. Housinghace flexibility and gap closure will determine the shape of the curves, along 
with the nonlinear Hertzian contact between the rolling elements and the races, described by 

NEW FINITE ELEMENTEONTACT MECHANICS METHOD 

Approach 

Finite element modeling is readily available and allows general modeling capability, including arbitrary 
geometry, thermoelastic interaction, and gaps. It is possible to model any inner race, outer race, and housing 
desired, but accurate calculation of rolling element kinematics is difficult. On the other hand, bearing 
mechanics software has been well developed for many years, but does not include general race compliance 
and deadband effects. The logical new approach outlined below augments the bearing mechanics software 
with a full stiffness representation of the hardware derived from finite element analysis. The existing 
capability to analyze detailed kinematics, Hertzian contact, and centrifugal loading is used with minor 
modification. 

i 
Modification of Contact Algorithms 

The nonlinear equations governing bearing mechanics are commonly solved by Newton- 
Raphson methods as follows: 

I 1. Guess bearing race rigid body relative deflections. 
2. Compute resultant ball deflections and loads by kinematic and Hertzian contact equations. 
3. Compare the vector sum of ball loads to given external loads. The difference is error loads. 
4. Convert load errors to incremental displacements using an updated linear compliance based on 

current ball loading (tangent compliance). 
5. Return to 2. with new displacements until convergence. 

Inclusion of flexibility/deadband effects can be achieved by appropriate modification of step 2, ball load 
calculation, and step 4, linear compliance calculation. In the new method, the ball loads from step 2, which 
act equal and opposite on the races, are used to compute race deflections roj, Zoj, rij, zi,, at the contact points 
of each ball j (subscripts 0, i indicate outer and inner race). These deflections are returned to step 2, along 
with the updated total relative rigid body deflections 6,, by (along external radial loads), 6, (axial), and Ox, By 
(angular about external moment axes). The rigid body motions require conversion to individual relative race 
motions Arj, AZj, at each ball. Given rigid body radii to raceway curvature centers a0 and&, and ball j 
azimuth angle from the x direction @j, the individual ball rigid body motions are, [2], 

Arj = GxCOS@j + Gysin@j 

AZj = 6, + &iBXSin@j - &iByCOS#j 

The actual deflections seen by the ball are less than these values due to race compliance motions, 
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Note that cylindrical coordinates are assumed for all race deflections, with positive sense outward for rand in 
the direction of positive axial loading for z. 

As Figure 3 shows for the race flexure case, the variables A l j  and A2j used in solving the nonlinear equations, 
[2], can now be redefined as 

A l j  = BDsinaO + AZj - Zoj + Zij 

A2j = BDcosaO + Arj - roj + rij 

while the definitions of Xlj, X2j are unchanged by the flexure, [2], 

X l j  = [ (fo - 0.5)D + 6oj ]sinaoj 

X2j = [ (fo - 0.5)D + 6oj 1~0Saoj 

See Harris [2] Chapter 8.3 and 8.6 for details of the subsequent ball load solution using Alj, A2j, X l j ,  X2j. 

matrices are available for the current ball load levels. Incremental deflections are computed using 
incremental ball load by 

Actual computation of the current race flexure ro,, Zoj, rij, Z i j  is straightforward if bearing race compliance 

= CoAF 

and added to the deflections from the previous iteration (similarly for the inner race). Generation of the race 
compliance matrix Co will be discussed later. First, consider step 4 of the solution augmented by this new 
compliance. The race compliances are in series with the ball compliances, and both vary with ball load. 
Consider the outer race contact relation, [2], 

Qoj = OJ OJ 

which can be broken into rand z components by noting 

K .6 .3/2 

The result in rand z compliance form is 
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Linearized tangent compliance at the current Qoj can be obtained by taking the partials of (9) with respect 
to Qorj, Qozj. This is greatly simplified by assuming Cxoj constant, which is reasonable for small load 
increments. The compliance is then 

- 
2 / 3 ~  .1/3 = coj - 

3K0j OJ 
Cozj = aa 

ozj 

These ball compliances, with similar results for the inner race contact, can be summed with the race 
compliances to give approximate total bearing tangent compliance in individual ball terms of 

C can then be used to determine the incremental rigid body displacements b,, dy, da, ex, By, due to load 
error by using constraint matrices constructed as follows. With multiple applications of equations (2), the 
conventional (Reference [2]) kinematic relationship can be written in matrix form, 

AX = Ab 6 (1 2) 

where 

AxT  = [ o o o A ~ .  1 A Z ~ O O O ]  

6 T  = [ f i x  dy 6, ex ey 1 

(1 3a) 

(1 3b) 

and A x  and 6 are now defined to be incremental quantities for the current external load error, and 

1 0 
0 
0 

0 
0 
0 

By definition of the compliance matrix C, 

A x  = CAF, (15) 

where 

are individual ball load errors. The summation of ball load errors gives the external load error, and can be 
written in matrix form as 

T 
A F ~  = A F  A F ~  (17) 
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where 

AF = 

0 
0 
0 

0 
e 
0 

and !2j are ball load lever arms about the load application point on the inner race, 

P1j %i - fiDCOSaij 

[ 2j = 2i - fiDsinaij 

where 2i is the constant axial distance from the load point to the plane containing the inner raceway 
curvature center locus. The effect of inner race deflection on P l j  and 02j is negligible. 

d ef I ec t i o n s, 
Inverting (15), and using (12) and (17) yields the compliance relationship in terms of rigid body incremental 

6 = [ ~ ~ c - 1 ~ ~  1-1 A F ~  (20) F 

Note that the matrix computation of A F  must be performed in each iteration unless one is willing to neglect 
the varying terms. 

Although some approximations are made in the foregoing (Ox, By small, for example), the result (20) is of 
sufficient accuracy to ensure good Newton-Raphson incrementation and convergence. Absolute accuracy is 
not critical in the Newton-Raphson compliance update steps. The total ball load summation, however, must 
be accurate to obtain a correct solution, i.e., the load balance must be correct on the inner race. Equation 
(17) should be used for this purpose. Conventional bearing mechanics programs use O1j = dm/2 and 

approximation neglects moment due to radial ball loads as well as lever arm changes with contact angle. 
e2j = 0 which is convenient because AF becomes constant, but is not strictly correct. Such an 

Bearing Race/Housing Models 

The calculation of Co and Ci required for equations (6) and (11) can be handled as a separate process 
within each Newton-Raphson iteration. The four types of bearing/housing configurations of interest are the 
following: 

KLO: flexible inner race. 
KL1: flexible outer race and housing with no deadband. 
KL2: flexible outer race with deadband, and housing assumed rigid. 
KL3: flexible outer race and housing with deadband. 

All of these types are amenable to general finite element modeling such as that shown in Figures 4 and 5 
with balls omitted. The models need not be symmetric, and can be subjected to thermal loads, interference 
fits, and so on within the finite element program. The finite element models can be substructured (static 
condensation) in cylindrical coordinates to only degrees of freedom (DOFs) at nominal ball contact points 
and gap interfaces. Figure 6 shows the DOFs of interest for each configuration type, and the unloaded 
reduced stiffness matrix form. The choice of gap interface location and number is left to the analyst. 

To ensure inverti bility of KO, it is necessary to add soft springs across enough gaps within the finite 
element model to restrain rigid body motion (indicated by €oh., Erh). The springs should be just soft enough 
to produce negligible load at gap closure. Similarly, inverti bility of Ki requires soft springs from several ball 
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contact points to ground. These springs should be several orders of magnitude softer than the expected 
bearing stiffness, so that they generate negligible loads. With inverti bility assured, the total compliance 
matrices are 

KLO: Ki-1 =[Ci] 

KL1: K0-l =[Co] 

where the partitions Ci and Co are the matrices needed for equations (6) and (1 1). 

During solution iterations, the incremental race deflections are computed using equation (6) with Ci or Co 
from above and the current ball incremental loading. First, K0-l must be iteratively modified to account for 
gap closure or opening. The gap interface deflections must be checked by evaluating the increments, which 
are computed using current ball incremental loading AF 

since the ball loads are the only external loads on the race. The increments are then added to the previous 
gap deflections, and the totals are compared to the specified gap sizes. If a gap has closed, then KO must be 
augmented by a high stiffness across the gap which can be represented in the matrix form as 

Similarly, an opened gap requires augmentation with the negative of above. A new K0-l is computed and the 
gap checking process is repeated until no gaps change. Then the resulting Co can be used in equations (6) 
and (1 1). Excessively large values of kr and k, can cause solution instability, and should be avoided. A good 
scheme to determine these values is to find the largest term in the unloaded KO and multiply that by 100 to 
1000. It is prudent to check the conditioning of K0-l during the analysis and adjust kr, k, as required. 

Combined Analysis 

The overall analysis can now be summarized by the following steps. Steps that are new are highlighted in 
bold. 

1. Supply “rigid” bearing dimensions, parameters and loads, to bearing mechanics program. 

2. Read race matrices Ki and KO into program, along with gap size list. 

3. Perform first iteration using race rigidity assumption to obtain ball loads. 

4. Compute race deflections by equation (6). 
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5. Recalculate ball loads using existing code modified by equations (4). 

6. Check resultant load errors using the more exact equation (17). If negligible, stop. 

7. Update tangent compliance of outer race using KO and equations (22), (23) in an iterative loop, given 
incremental ball loads for this iteration. 

8. Compute incremental race deflections by equation (6), given incremental ball loads and updated race 
compliance. 

9. Update total tangent compliance C and incremental rigid body motion 6 using equations ( lo), ( l l ) ,  (19), 
and (20). 

10. Return to 5. with all updated displacements (previous + increments), both rigid body and flexural. This 
allows determination of Al j ,  A2j. 

Note that since steps 7 and 8 use incremental ball loads for the current iteration and not for the total load 
error in step 6, the compliance corrections and race deflections lag the Newton-Raphson update. 
Unfortunately, it is not possible to uniquely determine the individual ball load errors due to total load error in 
step 6. An approximate determination of A F ~  could be made by using a least squares estimate of equation 
(17) given AF6 load errors. However, the improvement in Newton-Raphson convergence would be offset by 
the least squares computations required. For now, the least squares estimation is omitted. 

BEARING PRELOADING ANALYSIS 

The case of axial loading only at zero speed (preloading) greatly simplifies the computations discussed. All 
contact angles become equal for a symmetric bearing, radial and moment load resultant are zero, and all 
balls behave the same given a symmetric race model. The simplified versions of the general equations 
presented are easily incorporated into existing bearing mechanics software. The sample analysis shown 
below was performed using an augmented version of the readily available bearing mechanics program 
developed by A.B. Jones. The new program has been named ROBEAN (Rolling BEaring ANalysis). 

The Bearing Model 

The bearing described in Table 1 was used for the sample preloading analysis. Figure 4 shows the outer 
race model. The inner race was assumed rigid. Figure 5 shows a schematic of the gaps at each ball and race 
restraint used. In addition, very soft springs of 17,520 N/m (100 Ib/in) span the gaps in rand z cylindrical 
directions, and for the KL3 flexible housing case, the housing is represented by 1.75 x 108 N/m (1.0 x lo6  
Ib/in) springs in rand z at each gap. The reduced stiffness matrices for cases KL1, KL2, and KL3 were 
prepared with ANSYS and read into ROBEAN automatically. Uniform gap values of 0.0050 mm (0.0002 in) 
were also supplied for KL2 and KL3. Additionally, the usual “rigid” bearing inputs were entered as always. . 

Results 

Preloads of up to 8900 N (2000 Ib) were applied to the bearing in ROBEAN, for the three cases KLl ,  KL2, 
and KL3. A fourth case where gaps never close was also included for comparison after gap closure of KL2 
and KL3. Results from Harris [2], Chapter 6.5, assuming rigid races are presented with the new results in 
Figures 7 and 8. 

The results show the differences in axial deflection and contact angle for the different bearing types 
studied. 
ball/race interfaces is accounted for in the Harris calculations. Therefore, this bearing model shows the 
greatest stiffness in Figure 7. The KL1 bearing model adds outer race bulk flexibility, and its effective 

In both figures, the nonlinear variations with preload can be seen. Only Hertzian contact at the 

38 1 



stiffness is slightly less. Note that the Hertzian deformations already included in the ball load calculations do 
not occur in the finiteelement model because of its mesh coarseness. If they had, KL1 stiffness would be 
much less. 

The KL2 bearing accounts for a radial gap clearance of 0.0050 mm (0.0002 in). A significant decrease in 
axial stiffness is seen for this bearing before gap closure in comparison to the rigid model. This is due to the 
unrestrained growth of the outer race. Approximately 5120N (1 150 Ib) of preload is needed to close the gap. 
At gap closure, KL2 bearing stiffness is increased, and now essentially matches that of the KL1 case. 
However, total axial deflection is greater. 

The KL3 bearing stiffness is essentially equivalent to KL2 up to the point of gap closure. The extra housing 
compliance results in a smaller stiffness increase upon gap closure than the KL2 case. 

CONCLUSIONS 

New accurate methods have been developed to include arbitrary race/housing/deadband structures in 
bearing loading analysis. The flexible structures except balls and Hertizian contact are modeled and 
substructured using available finite element programs. The effects can be included within existing 
Newton-Raphson bearing mechanics program iterations with minimal impact. 

The new methods are shown to be viable for a preloading example. Axial stiffness is significantly 
affected by outer race clearance. 

The preloading example results indicate a need to investigate more complex loading cases. The 
authors will do so and present results in another paper. 

Although not specifically discussed, the analyst’s freedom of gap modeling implicitly allows the new 
methods to account for general outer race misalignment or “cocking” within the housing bore, 
including full flexibility and nonuniform geometry effects. This only requires more gaps to be defined, 
and the formulation is unchanged. 

The following effects have been neglected in the development presented, and are still under 
investigation by the authors: 

- contact angle change due to flexure and “cocking” induced local rotation only - likely negligible, 

- change in%i,So, raceway curvature, and other size parameters due to flexure - likely negligible, 

- change in race stiffness due to movement of contact point on the race - possibly non-negligible, 

because such rotations are much smaller than the contact angle changes. 

because flexural changes are small percentage of nominal. 

because movement is significant, proportional to contact angle change. 
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TABLE 1. Subject bearing specification 

Bore : 45 mm (1.771 in) 
Number of Balls : 14 
Ball Diameter : 8.74 rnm (.344 in) 
Pitch Diameter : 59.44 rnm (2.34 in) 
Unmounted Contact Angle : 18.24' 
Outer Raceway Osculation : .523 
Inner Raceway Osculation : .532 

Bore 
Center 

Bearing 
Center 

FIGURE 1. A bearing with deadband, unloaded 

FIGURE 2. General load-deflection relationships for a flexible bearing with deadband 
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- 
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FIGURE 3. Ball bearing kinematics including race flexure 

FIGURE 4. Outer race finite element model 
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1 
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FIGURE 5. Bearing model schematic 
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KLO: Ki [ ~ i i ]  

K,= Koo Kor 
[Kor Krr ] 

FIGURE 6. DOFs of interest in race/housing models 
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FIGURE 7. Axial deflection vs. preload for the various bearing types 
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FIGURE 8. Change in contact angle vs. preload for the various bearing types 
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